You are trying to disprove that 2\(\ne\) 1 after your friend shows you the following nine step proof that 2 = 1.
\(1.{\rm \; \; }a=b{\rm \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; }assumption\)
\(2.{\rm \; \; }a^{2} =b^{2} {\rm \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; }square{\rm \; }both{\rm \; }sides\)
\(3.{\rm \; \; }a^{2} -b^{2} =b^{2} -b^{2} {\rm \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; }subtract{\rm \; }both{\rm \; }sides{\rm \; }by{\rm \; }b^{2} \)
\(4.{\rm \; \; }(a-b)(a+b)=b(b-b){\rm \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; }factor{\rm \; }both{\rm \; }sides\)
\(5.{\rm \; \; }(a-b)(a+b)=b(a-b){\rm \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; }substitute{\rm \; }b{\rm \; }with{\rm \; }a\)
\(6.{\rm \; \; }(a+b)=b{\rm \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; }cancel{\rm \; }\left(a-b\right){\rm \; }on{\rm \; }both{\rm \; }sides\)
\(7.{\rm \; \; }(b+b)=b{\rm \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; }substitute{\rm \; }a{\rm \; }with{\rm \; }b\)
\(8.{\rm \; \; }2b=b{\rm \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; }add{\rm \; }b+b\)
\(9.{\rm \; \; }2=1{\rm \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; \; }cancel{\rm \; }b{\rm \; }on{\rm \; }both{\rm \; }sides\)
Is it possible for you to disprove your friends conjecture? Provide justification to support your conclusion.
Get Full Access to Lumos StepUp High School Geometry - Mathematics Practice test + Workbook
Currently, you have limited access to Lumos StepUp High School Geometry - Mathematics Practice test + Workbook. The Full Program includes,